Unitary 2-designs are random unitaries simulating up to the second order statistical moments of the uniformly distributed random unitaries, often referred to as Haar random unitaries. They are used in a wide variety of theoretical and practical quantum information protocols and also have been used to model the dynamics in complex quantum many-body systems. Here, we show that unitary 2-designs can be approximately implemented by alternately repeating random unitaries diagonal in the Pauli-Z basis and Pauli-X basis. We also provide a converse about the number of repetitions needed to achieve unitary 2-designs. These results imply that the process after l repetitions achieves a Theta(d(-l))-approximate unitary 2-design. Based on the construction, we further provide quantum circuits that efficiently implement approximate unitary 2-designs. Although a more efficient implementation of unitary 2-designs is known, our quantum circuit has its own merit that it is divided into a constant number of commuting parts, which enables us to apply all commuting gates simultaneously and leads to a possible reduction of an actual execution time. We finally interpret the result in terms of the dynamics generated by time-dependent Hamiltonians and provide for the first time a random disordered time-dependent Hamiltonian that generates a unitary 2-design after switching interactions only a few times. Published by AIP Publishing.

1 aNakata, Yoshifumi1 aHirche, Christoph1 aMorgan, Ciara1 aWinter, Andreas uhttp://grupsderecerca.uab.cat/giq/node/850