Heisenberg-{Weyl} {Observables}: {Bloch} vectors in phase space

TitleHeisenberg-{Weyl} {Observables}: {Bloch} vectors in phase space
Publication TypeJournal Article
Year of Publication2016
AuthorsAsadian, A, Erker, P, Huber, M, Klockl, C
JournalPhysical Review A
Volume94
Issue1
Pagination010301
Date Publishedjul
Abstract

We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first nontrivial example beyond the dichotomic case.

URLhttps://link.aps.org/doi/10.1103/PhysRevA.94.010301
DOI10.1103/PhysRevA.94.010301
Campus d'excel·lència internacional U A B