Detection of Entanglement in Ultracold Lattice Gases

TitleDetection of Entanglement in Ultracold Lattice Gases
Publication TypeJournal Article
Year of Publication2011
AuthorsChiara, G, Sanpera, A
JournalJournal of Low Temperature Physics
Volume165
Pagination292 - 305
Date Published12/2011
ISSN1573-7357
Abstract

Probing non trivial magnetic ordering in quantum magnets realized with ultracold lattice gases demands detection methods with some spatial resolution built on it. Here we demonstrate that the Faraday matter-light interface provides an experimentally feasible tool to distinguish indubitably different quantum phases of a given many-body system in a non-demolishing way. We illustrate our approach by focussing on the Heisenberg chain for spin-1 bosons in the presence of a SU(2) symmetry breaking field. We explain how using the light signal obtained via homodyne detection one can reconstruct the phase diagram of the model. Further we show that the very same technique that provides a direct experimentally measurable signal of different order parameters can be extended to detect also the presence of multipartite entanglement in such systems.

URLlink.springer.com/article/10.1007%2Fs10909-011-0403-8
DOI10.1007/s10909-011-0403-8
Short TitleJ Low Temp Phys
Campus d'excel·lència internacional U A B