02307nas a2200109 4500008003900000245008800039210006900127260004800196520190000244100001802144856003502162 2014 d00aDealing with ignorance: universal discrimination, learning and quantum correlations0 aDealing with ignorance universal discrimination learning and qua bUniversitat Autònoma de Barcelonac06/20143 aThe problem of discriminating the state of a quantum system among a number of hypothetical states is usually addressed under the assumption that one has perfect knowledge of the possible states of the system. In this thesis, I analyze the role of the prior information available in facing such problems, and consider scenarios where the information regarding the possible states is incomplete. In front of a complete ignorance of the possible states' identity, I discuss a quantum "programmable" discrimination machine for qubit states that accepts this information as input programs using a quantum encoding, rather than as a classical description. The optimal performance of these machines is studied for general qubit states when several copies are provided, in the schemes of unambiguous, minimum-error, and error-margin discrimination. Then, this type of automation in discrimination tasks is taken further. By realizing a programmable machine as a device that is trained through quantum information to perform a specific task, I propose a quantum "learning" machine for classifying qubit states that does not require a quantum memory to store the qubit programs and, nevertheless, performs as good as quantum mechanics permits. Such learning machine thus allows for several optimal uses with no need for retraining. A similar learning scheme is also discussed for coherent states of light. I present it in the context of the readout of a classical memory by means of classically correlated coherent signals, when these are produced by an imperfect source. I show that, in this case, the retrieval of information stored in the memory can be carried out more accurately when fully general quantum measurements are used. Finally, as a transversal topic, I propose an efficient algorithmic way of decomposing any quantum measurement into convex combinations of simpler (extremal) measurements.1 aSentís, Gael uhttp://arxiv.org/abs/1407.4690