%0 Journal Article
%J Quantum
%D 2018
%T Separability of diagonal symmetric states: a quadratic conic optimization problem
%A Tura, Jordi
%A Aloy, Albert
%A Quesada, Ruben
%A Lewenstein, Maciej
%A Sanpera, Anna
%B Quantum
%V 2
%P 45
%8 Dec-01-2018
%U https://quantum-journal.orghttps://quantum-journal.org/papers/q-2018-01-12-45/
%! Quantum
%R 10.22331/q10.22331/q-2018-01-12-45
%0 Journal Article
%J Physical Review A
%D 2017
%T Entanglement and nonlocality in diagonal symmetric states of
%A Quesada, Ruben
%A Rana, Swapan
%A Sanpera, Anna
%B Physical Review A
%V 95
%8 Jan-04-2017
%U http://link.aps.org/doi/10.1103/PhysRevA.95.042128http://harvest.aps.org/v2/journals/articles/10.1103/PhysRevA.95.042128/fulltexthttp://link.aps.org/article/10.1103/PhysRevA.95.042128
%! Phys. Rev. A
%R 10.1103/PhysRevA.95.042128
%0 Journal Article
%J Physical Review A
%D 2014
%T Best separable approximation of multipartite diagonal symmetric states
%A Quesada, Ruben
%A Sanpera, Anna
%X The structural study of entanglement in multipartite systems is hindered by the lack of necessary and sufficient operational criteria able to discriminate among the various entanglement properties of a given mixed state. Here, we pursue a different route to the study of multipartite entanglement based on the closeness of a multipartite state to the set of separable ones. In particular, we analyze multipartite diagonal symmetric N-qubit states and provide the analytical expression for their best separable approximation (BSA, [Phys. Rev. Lett. 80, 2261 (1998)]), that is, their unique convex decomposition into a separable part and an entangled part, with maximal weight of the separable part.
%B Physical Review A
%V 89
%8 5/2014
%N 5
%! Phys. Rev. A
%R 10.1103/PhysRevA.89.052319