Beam Shapping

We are studying the use of liquid crystal spatial light modulators to generate vectorial beams in which we can spatially control all the parameters: amplitude, phase, and polarization. These vectorial beams will be focalized by means of High Numerical Aperture () microscope objective HNAM to study properties of nanoparticles.

 

  • Jones matrix treatment for polarization Fourier Optics

We have introduced the use of a Jones matrix method to evaluate the far-field diffraction produced by spatially variant polarization elements. We extend the scalar Fourier optics theory to a vectorial theory by the use of the Jones matrix formalism. With this method it is possible to analyze the diffraction pattern and the local state of polarization in the Fraunhofer approximation by means of the usual Jones matrix calculus.

 polarization_vortices

 

  • Beams with controlled polarization and degree of polarization

We have proposed new techniques that are able to generate a light beam with a controlled state of polarization (SoP) and a customized degree of polarization (DoP). The first technique relies on the fact that effective depolarization can be achieved by temporally averaging a time-dependent SoP. The second technique consists in incoherently adding orthogonal SOPs with different weights (intensities).

 polarization_control

 

  • Vectorial Beams

We have proposed methods and set-ups to generate vectorial beams in which we can spatially control all the parameters: amplitude, phase, and polarization. These vectorial beams will be focalized by means of High Numerical Aperture () microscope objective HNAM to study properties of nanoparticles.

 

polarization pattern generator

 

  1. A. LizanaZhang, H.Turpin, A.Van Eeckhout, A.Torres-Ruiz, F. A.Vargas, A.Ramirez, C.Pi, F., and Campos, J.“Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures”, Scientific Reports, 2018.
  2. H. ZhangLizana, A.Van Eeckhout, A.Turpin, A.Iemmi, C.Márquez, A.Moreno, I.Torres-Ruiz, F. A.Vargas, A.Pi, F., and Campos, J.“Dynamic microparticle manipulation through light structures generated by a self-calibrated Liquid Crystal on Silicon display”, Proc.SPIE, vol. 10677, pp. 10677 - 10677 - 13, 2018.
  3. A. LizanaVargas, A.Turpin, A.Ramírez, C.Estevez, I., and Campos, J.“Shaping light with split lens configurations”, Journal of Optics, vol. 18, p. 105605, 2016.
  4. X. ZhengLizana, A.Peinado, A.Ramírez, C.Martínez, J. L.Márquez, A.Moreno, I., and Campos, J.“Compact LCOS-SLM based polarization pattern beam generator”, IEEE Journal of Lightwave Technology, vol. 33, pp. 2047-2055, 2015.
  5. I. EstévezLizana, A.Zheng, X.Peinado, A.Ramírez, C.Martínez, J. L.Márquez, A.Moreno, I., and Campos, J.“Parallel Aligned Liquid Crystal on Silicon display based optical set-up for the generation of polarization spatial distributions”, Proceedings SPIE, vol. 9526, pp. 95261A:1-8, 2015.
  6. A. TurpinLoiko, Y. V.Peinado, A.Lizana, A.Kalkandjiev, T. K.Mompart, J., and Campos, J.“Polarization tailored novel vector beams based on conical refraction”, Optics Express, vol. 23, pp. 5704-5715, 2015.
  7. I. MorenoIemmi, C.Campos, J.Yzuel, M. J., and Vargas, A.“Analysis of polarization vortices generated from a polarization diffractive mask”, Proc. SPIE, vol. 7000, pp. 700017-700017-12, 2008.
  8. I. MorenoIemmi, C.Campos, J.Yzuel, M. J., and Vargas, A.“Polarization vortices generation by diffraction from a four quadrant polarization mask”, Optics Communications, vol. 276, pp. 222 - 230, 2007.
  9. I. MorenoYzuel, M. J.Campos, J., and Vargas, A.“Jones matrix treatment for polarization fourier optics”, Journal of Modern Optics, vol. 51, pp. 2031-2038, 2004.
Campus d'excel·lència internacional U A B