A slip-based model for the size-dependent effective thermal conductivity of nanowires. International Communications in Heat and Mass Transfer [Internet]. 2018;91:57–63. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.013 .
Effective thermal conductivity of rectangular nanowires based on phonon hydrodynamics. International Journal of Heat and Mass Transfer. 2018;126:1120–1128. .
Collective thermal transport in pure and alloy semiconductors. Physical Chemistry Chemical Physics. 2018;20:6805–6810. .
Emergence of hydrodynamic heat transport in semiconductors at the nanoscale. Physical Review Materials [Internet]. 2018;2:076001. https://link.aps.org/doi/10.1103/PhysRevMaterials.2.076001 .
Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nature Communications [Internet]. 2018;9:255. https://dx.doi.org/10.1038/s41467-017-02652-4 https://www.nature.com/articles/s41467-017-02652-4 .
Thermal conductivity of Bi2Te3 nanowires: how size affects phonon scattering. Nanoscale [Internet]. 2017;9:6741–6747. https://doi.org/10.1039/c7nr02173a .
First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B [Internet]. 2017;95:165407. https://link.aps.org/doi/10.1103/PhysRevB.95.165407 .
Enhancing of optic phonon contribution in hydrodynamic phonon transport. Journal of Applied Physics [Internet]. 2015;118:134305. https://doi.org/10.1063%2F1.4932034 .
Tailoring thermal conductivity by engineering compositional gradients in Si1-x Ge x superlattices. Nano Research [Internet]. 2015;8:2833–2841. https://doi.org/10.1007/s12274-015-0788-9 .
From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. Journal of Applied Physics [Internet]. 2014;115:164314. https://doi.org/10.1063%2F1.4871672 .
Thermal conductivity of group-{IV} semiconductors from a kinetic-collective model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2014;470:20140371–20140371. https://doi.org/10.1098/rspa.2014.0371 .
In-plane thermal conductivity of sub-20 nm thick suspended mono-crystalline Si layers. Nanotechnology [Internet]. 2014;25:185402. https://doi.org/10.1088/0957-4484/25/18/185402 .
Nanoscale Thermoelectrics [Internet]. Springer International Publishing; 2014. https://doi.org/10.1007/978-3-319-02012-9 .
Thermal rectification in inhomogeneous nanoporous Si devices. Journal of Applied Physics [Internet]. 2013;114:053512. https://doi.org/10.1063/1.4816685 .
Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. International Journal of Heat and Mass Transfer [Internet]. 2012;55:3114–3120. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.045 .
Phonon Boundary Effects and Thermal Conductivity of Rough Concentric Nanowires. Journal of Heat Transfer [Internet]. 2011;133:022402. https://doi.org/10.1115/1.4002439 .
Thermal conductivity of thin single-crystalline germanium-on-insulator structures. International Journal of Heat and Mass Transfer [Internet]. 2011;54:1959–1962. https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.006 .
Heat waves and phonon-wall collisions in nanowires. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2011;467:2520–2533. https://doi.org/10.1098/rspa.2010.0645 .
Phonon-wall interactions and frequency-dependent thermal conductivity in nanowires. Journal of Applied Physics [Internet]. 2011;109:064317. https://doi.org/10.1063/1.3565138 .
Non-local effects in radial heat transport in silicon thin layers and graphene sheets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2011;468:1217–1229. https://doi.org/10.1098/rspa.2011.0584 .
Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydrodynamic approach. Applied Physics Letters [Internet]. 2010;97:033103. https://doi.org/10.1063/1.3462936 .
Analytical expression for thermal conductivity of superlattices. Journal of Applied Physics [Internet]. 2010;107:084303. https://doi.org/10.1063/1.3386464 .
Boundary Conditions and Evolution of Ballistic Heat Transport. Journal of Heat Transfer [Internet]. 2010;132:012404. https://doi.org/10.1115/1.3156785 .
A quantitative and statistically robust method for the determination of xylem conduit spatial distribution. American Journal of Botany [Internet]. 2010;97:1247–1259. https://doi.org/10.3732/ajb.0900289 .
Second law of thermodynamics and phonon-boundary conditions in nanowires. Journal of Applied Physics [Internet]. 2010;107:064302. https://doi.org/10.1063/1.3309477 .
Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. Journal of Applied Physics [Internet]. 2010;107:114312. https://doi.org/10.1063/1.3431348 .
Statistical physics and fluctuations in ballistic non-equilibrium systems. Physica A: Statistical Mechanics and its Applications [Internet]. 2009;388:2367–2372. https://doi.org/10.1016/j.physa.2009.02.030 .
Phonon hydrodynamics and phonon-boundary scattering in nanosystems. Journal of Applied Physics [Internet]. 2009;105:014317. https://doi.org/10.1063/1.3056136 .
Robustness of the nonequilibrium entropy related to the Maxwell-Cattaneo heat equation. Physical Review E [Internet]. 2008;77. https://doi.org/10.1103/physreve.77.031110 .
Size and frequency dependence of effective thermal conductivity in nanosystems. Journal of Applied Physics [Internet]. 2008;103:094321. https://doi.org/10.1063/1.2913057 .
Cross-plane thermal conductivity reduction of vertically uncorrelated Ge∕Si quantum dot superlattices. Applied Physics Letters [Internet]. 2008;93:013112. https://doi.org/10.1063/1.2957038 .
Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Applied Physics Letters [Internet]. 2007;90:083109. https://doi.org/10.1063/1.2645110 .
Extended entropy and irreversible thermodynamics of a Lorentz diffusive gas. Physica A: Statistical Mechanics and its Applications [Internet]. 2007;377:79–83. https://doi.org/10.1016/j.physa.2006.09.030 .